33 research outputs found

    Caleb Mills and the Indiana Free School Law

    Get PDF

    Unicameralism and the Indiana Constitutional Convention of 1850

    Get PDF

    Indiana: Birthplace of Migratory Divorce

    Get PDF

    Caleb Mills and the Indiana Free School Law

    Get PDF

    Adaptation, Exaptation, and Constraint: A Hormonal Perspective

    Get PDF
    We approach conceptual issues in evolutionary biology from an endocrinological perspective, noting that single hormones typically act on several target tissues and thereby mediate suites of correlated phenotypic traits. When several components of such a suite are beneficial, an important evolutionary question is whether all are adaptations or some are exaptations. The answer may depend on whether the traits arose in response to selection on variation in systemic levels of the hormone on variation in responsiveness of target tissues to invariant levels of the hormone. If the former, selection probably acted directly on fewer than all traits; beneficial traits arising indirectly would be exaptations. In contrast, multiple beneficial traits that arose out of independent changes in target‐tissue sensitivity to invariant hormone levels could all be adaptations. Knowledge of specific hormonal mechanisms as well as of historical selective regimes will be necessary to draw such distinctions. Endocrine constraints on evolution can be studied experimentally by applying hormones systemically and measuring interdependent responses of beneficial and detrimental traits to selection (phenotypic engineering with hormones). Supposing that alteration of one trait in isolation would enhance fitness, cases in which the net effect of endocrine alteration of multiple traits is to depress fitness provide evidence for constraints. We briefly report results of recent studies employing hormonal manipulations, stressing our own work on the dark‐eyed junco (Junco hyemalis: Emberizidae)

    Hormones and Life Histories: An Integrative Approach

    Get PDF
    Because of their role in mediating life‐history trade‐offs, hormones are expected to be strongly associated with components of fitness; however, few studies have examined how natural selection acts on hormonal variation in the wild. In a songbird, the dark‐eyed junco (Junco hyemalis), field experiments have shown that exogenous testosterone alters individuals’ resolution of the survival‐reproduction trade‐off, enhancing reproduction at the expense of survival. Here we used standardized injections of gonadotropin‐releasing hormone (GnRH) to assay variation in the testosterone production of males. Using measurements of annual survival and reproduction, we found evidence of strong natural selection acting on GnRH‐induced increases in testosterone. Opposite to what would be predicted from the survival‐reproduction trade‐off, patterns of selection via survival and reproduction were remarkably similar. Males with GnRH‐induced testosterone production levels that were slightly above the population mean were more likely to survive and also produced more offspring, leading to strong stabilizing selection. Partitioning reproduction into separate components revealed positive directional selection via within‐pair siring success and stabilizing selection via extrapair mating success. Our data represent the most complete demonstration of natural selection on hormones via multiple fitness components, and they complement previous experiments to illuminate testosterone’s role in the evolution of life‐history trade‐offs

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Prairie warbler field notes 1953 Bloomington, Indiana

    No full text
    Field notes (1953) from Val Nolan Jr's study of the ecology and behavior of the prairie warbler, Dendroica discolor in Bloomington, Indiana. This study began in 1952, and systematic field work continued through 1965
    corecore